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reaction, the Takai alkylidenation, a novel anionic oxy-Cope rearrangement of acyclic enol ethers and an
intramolecular aldol reaction. The stereoselectivity of the acid-induced, 6- (cnolendo) -exo-trig,
intramolccular, aldol reaction beiween an aldehyde and an enol ether has been mvestigateu The sirong
preference for an axial hydroxyl in the B—hydroxycyclohexanone products is explained in terms of an
electrostatic interaction in the oxonium ion intermediate.
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We are developing a general method for the stereocontrolled synthesis of polyfunctionalised ring
systems using four key reactions: the aldol reaction, Takai alkylidenation, a novel anionic oxy-Cope (AOC)
rearrangement of acyclic enol ethers and a new intramolecular aldol reaction (scheme 1). The aldol reaction is
chosen as the first step in the synthesis as it is reliable and has many diastereoselective and enantioselective
variants.! Z-Selective Takai alkylidenation? introduces further stereochemical information. The AOC
rearrangement moves this 'information’ into positions that are less accessible by 'direct’ synthesis, and it may

also increase the stereochemical complexity of the system. The product enolate 1 is quenched with an

up to two new chiral centres. Similar 6-(Enolendo)—exo-trig intramolecular aldol reactions are some of the most
important synthetic (e.g. the Robinson annulation) and biological transformations (e.g. aromatic ring formation
in polyketide synthesis). It is surprising therefore that, prior to our work, there has been no systematic study of
the stereochemical aspects of this highly favoured process.d
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Here we renort onr first successes with the abhove ronte usine simnle racemic comnonndg eaction of
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trifluoride induced Mukaiyama aldol6 with the trimethylsilyl enol ether of phenyl acetate gave aldol 4d in 52%
yield (scheme 2). Protection of the aldols as silyl ethers 5, followed by Takai alkylidenation to give enol ethers
6 and 7 and removal of the silyl protecting groups gave alcohols 8 and 9 in 25-55% overall yield from the
corresponding aldols. Protection of the hydroxyl is vital to the success of the alkylidenation reaction. Tert.-
butyldimethylsilyl (TBS), triethylsilyl (TES) and trimethylsilyl groups (TMS) were all effective. We prefer the
TMS group as it is easiest to remove and there is no need to purify intermediates S and 6 by chromatography.
Alkylidenation with 1,1-dibromoethane gave mixtures of Z and E enol ethers with the Z isomers predominating

(81-85% Z, assignment’ by 13C NMR). The isomers were separated after de51lylat1on. Much higher Z
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Scheme 2

The methyl enol ether 8a gave a complex mixture of products under a variety of conditions for the AOC
rearrangement. However, iso-propyl enol ether 8¢ reacted with potassium hydride and 18-crown-6 in DME to

give a naked alkoxide 10 which underwent AOC rearrangement to enolate 11 (scheme 3). This was quenched

with 1M agueous hvdrochloric acid to generate the desired aldehvde 12 which cvelised under these acid
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conditions o give a 94:6 ratic of 3,5-an#i and 3,5-syn p-hydroxycyclohexanones 13 and 14 (o CNyaraiion).”
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ycyclohexanone 13 was obtained in 43% yield by crystallisation. In the same way the phenyi
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enol ether 8d rearranged and cyclised to give a 78:11:11 ratio of B-hydroxycyclohexanones 13 and 14 and
cyclohexenone resulting from dehydration. The intermediate aldehyde 15 was isolated in 61% yield (minor
impurities) by using saturated aqueous sodium bicarbonate instead of acid to quench the enolate. This is the first
example of a compound containing an aldehyde and an enol ether in a 1,5 relationship. Its relative stability is
due to the electron withdrawing effect of the phenyl group.

AOC rearrangement of Z iso-propyl enol ether 9¢ followed by acid quench gave a 78:11:10:1 mixture of

the three p-hydroxycyclohexanones 16, 17, and 18 and cyclohexenones resulting from dehydration (scheme
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scneme ) 5,6 Ssyn p nyuroxy(.y hexanones 18 and 19 arise from a boat-like transition state 21. The

oxy-anion is assumed to be equatorxal in transition states 20 and 21 to avoid a 1,3 pseudo-diaxial interaction
with the electron rich oxygen of the enol ether.

OR! Ph | a
)\\\‘Rz H30* 2p7~L7 H,0 )K.\\Rz
| — | T | I

| S |

&\
12,R'=Pr,R2=H . 22 H _ R2=H, 13
15, R'=Ph,R2=H R2 = Me, 16

23, R'=iPr, R = Me

munlicntinn hatra an avia Thodeavogl W o svims o 'S MRt
LyLiidauvll 11ave dil aAldl l_yUlUA_yl Yo plUpUbC uidat e UAUIUUIII IUH

s

ducts 13 and 16 o
22 with an axial hydroxyl is stabilised by the electrostatic interaction shown in scheme 6, and that either there is
a rapid equilibration in favour of this oxonium ion by a retro-aldol/aldol reaction prior to hydrolysis or the
transition state leading to ion 22 is stabilised by the developing electrostatic interaction. Calculations? on
unsubstituted B-hydroxycyclohexanone indicate that there is a preference for an axial hydroxyl in a vacuum and
that this preference is reinforced in the oxonium ion.

In summary, we have demonstrated a new stercoselective route to B-hydroxycyclohexanones, reported

the previously unknown 6-(enolendo)-exo-trig cyclisation of enol ethers onto aldehvdes, and explained the high
selectivity for an axial hydroxyl in the product B—hydroxycyclohcxanoncs. Similar B-hydroxycyclohexanones
are known to be plant growth regulators.19
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